Supervised Learning with Complex Spikes and Spike-Timing-Dependent Plasticity

نویسنده

  • Conor Houghton
چکیده

One distinctive feature of Purkinje cells is that they have two types of discharge: in addition to simple spikes they fire complex spikes in response to input from the climbing fibers. These complex spikes have an initial rapid burst of spikes and spikelets followed by a sustained depolarization; in some models of cerebellar function this climbing fiber input supervises learning in Purkinje cells. On the other hand, synaptic plasticity is often thought to rely on the timing of pre-synaptic and post-synaptic spikes. It is suggested here that the period of depolarization following a complex spike, combined with a simple spike-timing-dependent plasticity rule, gives a mechanism for the climbing fiber to supervise learning in the Purkinje cell. This proposal is illustrated using a simple simulation in which it is seen that the climbing fiber succeeds in supervising the learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Supervised Learning Algorithm Using Triplet-Based Spike-Timing-Dependent Plasticity

The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit arbitrary spike trains in response to given synaptic inputs. Recent years, the supervised learning algorithms based on synaptic plasticity have developed rapidly. As one of the most efficient supervised learning algorithms, the remote supervised method (ReSuMe) uses the conventional pair-ba...

متن کامل

Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnost...

متن کامل

Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism in Spiking Neural Networks

Spiking Neural Networks (SNNs) are one of the recent advances in machine learning that aim to further emulate the computations performed in the human brain. The efficiency of such networks stems from the fact that information is encoded as spikes, which is a paradigm shift from the computing model of the traditional neural networks. Spike Timing Dependent Plasticity (STDP), wherein the synaptic...

متن کامل

theory of non-linear spike-time-dependent plasticity

A fascinating property of the brain is its ability to continuously evolve and adapt to a constantly changing environment. This ability to change over time, called plasticity, is mainly implemented at the level of the connections between neurons (i.e. the synapses). So if we want to understand the ability of the brain to evolve and to store new memories, it is necessary to study the rules that g...

متن کامل

Temporally Dependent Plasticity: An Information Theoretic Account

The paradigm of Hebbian learning has recently received a novel interpretation with the discovery of synaptic plasticity that depends on the relative timing of pre and post synaptic spikes. This paper derives a temporally dependent learning rule from the basic principle of mutual information maximization and studies its relation to the experimentally observed plasticity. We find that a supervise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014